Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Biol Chem ; 299(8): 105010, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414148

RESUMO

The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.


Assuntos
Bilophila , Humanos , Alcanossulfonatos/metabolismo , Bilophila/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo , Taurina/metabolismo , Microbioma Gastrointestinal
2.
Int J Biol Macromol ; 240: 124428, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062383

RESUMO

Bilophila wadsworthia is one of the prominent sources of hydrogen sulfide (H2S) production in appendices, excessive levels of which can result in a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Isethionate sulfite-lyase (IslA) enzyme catalyzes H2S production by cleaving CS bond in isethionate, producing acetaldehyde and sulfite. In this study, we aimed to identify potential substrate antagonists for IsIA using a structure-based drug design. Initially, pharmacophore-based computational screening of the ZINC20 database yielded 66 hits that were subjected to molecular docking targeting the isethionate binding site of IsIA. Based on striking docking scores, nine compounds showed strong interaction with critical IsIA residues (Arg189, Gln193, Glu470, Cys468, and Arg678), drug-like features, appropriate adsorption, metabolism, excretion, and excretion profile with non-toxicity. Molecular dynamics simulations uncovered the significant impact of binding the compounds on protein conformational dynamics. Finally, binding free energies revealed substantial binding affinity (ranging from -35.23 to -53.88 kcal/mol) of compounds (ZINC913876497, ZINC913856647, ZINC914263733, ZINC914137795, ZINC915757996, ZINC914357083, ZINC913934833, ZINC9143362047, and ZINC913854740) for IsIA. The compounds proposed herein through a multi-faceted computational strategy can be experimentally validated as potential substrate antagonists of B. wadsworthia's IsIA for developing new medications to curb gut-associated illness in the future.


Assuntos
Bilophila , Liases , Simulação de Acoplamento Molecular , Bilophila/metabolismo , Liases/metabolismo , Simulação de Dinâmica Molecular , Sulfitos/metabolismo , Ligantes
3.
Anaerobe ; 78: 102641, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36108892

RESUMO

We report a rare case of polymicrobial anaerobic bacteremia caused by four different gut anaerobes: Bacteroides fragilis, Eggerthella lenta, Bilophila wadsworthia, and Ruminococcus gnavus. Early initiation of appropriate therapy and species identification with matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) resulted in full recovery from the infection. Our case highlights the clinical significance of polymicrobial cultures and the importance of performing anaerobic cultures for blood specimens to ensure proper identification and treatment.


Assuntos
Bacteriemia , Infecções Bacterianas , Neoplasias , Humanos , Bacteroides fragilis , Bilophila , Anaerobiose , Bactérias Anaeróbias , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Microbiol Spectr ; 10(2): e0204721, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35285706

RESUMO

The food we eat not only nourishes our bodies but also provides nutrients to the bacteria living in our guts. Gut bacterial communities are known to be affected by many factors, including diet and bowel cleansing, but the impacts of vegetarian and omnivore diets on fecal bacterial composition are still uncertain. In this study, we analyzed the bacterial compositions of fecal samples from vegetarians and omnivores 5 to 7 days after bowel cleansing, and we correlated specific dietary constituents with the relative abundances of specialized fecal bacteria. A total of 46 participants (23 vegetarians and 23 omnivores) were recruited. All participants underwent standard bowel cleansing before colonoscopy screening. Fecal samples were collected from each participant 5 to 7 days after bowel cleansing, and the fecal microbiota compositions were analyzed with next-generation sequencing. Sixteen participants also provided an image-based dietary record for nutritional assessment. No major differences between dietary groups were observed in terms of fecal bacterial richness, alpha diversity, or beta diversity. A minority of potential pathobionts tended to be elevated in omnivores compared to vegetarians, whereas potential probiotic species tended to be higher in the vegetarians. Detailed dietary assessments further revealed that the plant- and animal-derived proteins may oppositely modulate the relative abundances of pathobionts Bilophila and Lachnoclostridium. However, these results were not statistically significant after multiple-comparison correction. These results suggest that specialized probiotic and pathobiont microbiota constituents are sensitive to the plant- or animal-derived dietary components ingested by vegetarians and omnivores after bowel cleansing. IMPORTANCE Dietary pattern and food choice are associated with expansion of gut pathobionts and risk for metabolic and colonic disease. However, the effects of dietary interventions on intestinal microbiota remain unclear. After bowel cleansing, potential pathobionts and probiotic bacteria were increased in omnivores and vegetarians, respectively. The pathobionts Bilophila and Lachnoclostridium were oppositely modulated by dietary animal and plant protein. From a clinical perspective, fecal pathobionts that may indicate risk for metabolic and colonic disease can potentially be modulated with dietary interventions.


Assuntos
Bilophila , Doenças do Colo , Animais , Bactérias/genética , Clostridiales , Dieta/métodos , Fezes/microbiologia , Humanos , Vegetarianos
5.
BMC Microbiol ; 21(1): 340, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903181

RESUMO

BACKGROUND: Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2-aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves the glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslAB), which cleaves isethionate (2-hydroxyethanesulfonate) into acetaldehyde and sulfite. RESULTS: We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. CONCLUSIONS: We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut.


Assuntos
Bilophila/metabolismo , Bilophila/ultraestrutura , Ácido Isetiônico/metabolismo , Taurina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bilophila/genética , Compartimento Celular , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Humanos , Sulfeto de Hidrogênio/metabolismo , Proteômica , Sulfitos/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G639-G655, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643089

RESUMO

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast ß-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-wk dietary supplementation in healthy mice to evaluate the effects of different fiber composition (soluble vs. particulate Y-BG) and dose (0.1% vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared with the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 wk. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.NEW & NOTEWORTHY The study shows that dietary Y-BG supplementation modulated gut microbiota, bile acid metabolism and associated signaling pathways. Y-BG significantly reduced Bilophila abundance which is associated with obesity in human cohorts. Correlation analysis confirmed functional interactions between bile acid composition, gut microbiota, and metabolic phenotype, although clinical benefit did not reach significance in an aggressive obesity model. Gut microbiota and bile acids correlated with metabolic parameters, indicating future potential of dietary Y-BG modulation of metabolic pathways.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bilophila/crescimento & desenvolvimento , Fibras na Dieta/administração & dosagem , Microbioma Gastrointestinal , Intestino Delgado/microbiologia , Fígado/metabolismo , Obesidade/dietoterapia , Leveduras/metabolismo , beta-Glucanas/administração & dosagem , Animais , Bilophila/genética , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Resistência à Insulina , Intestino Delgado/metabolismo , Inulina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , beta-Glucanas/isolamento & purificação
7.
Cell Host Microbe ; 29(9): 1378-1392.e6, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358434

RESUMO

Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota. Depleting the microbiome reduces CI, whereas transplantation of the risk-associated microbiome or monocolonization with Bilophila wadsworthia confers CI in mice fed a standard diet. B. wadsworthia and the risk-associated microbiome disrupt hippocampal synaptic plasticity, neurogenesis, and gene expression. The CI is associated with microbiome-dependent increases in intestinal interferon-gamma (IFNg)-producing Th1 cells. Inhibiting Th1 cell development abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction.


Assuntos
Bilophila/metabolismo , Disfunção Cognitiva/patologia , Dieta Cetogênica/efeitos adversos , Hipocampo/fisiopatologia , Hipóxia Encefálica/fisiopatologia , Células Th1/imunologia , Animais , Microbioma Gastrointestinal/fisiologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/citologia
8.
Sci Rep ; 11(1): 7262, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790336

RESUMO

Butyrate is the primary energy source for colonocytes and is essential for mucosal integrity and repair. Butyrate deficiency as a result of colonic dysbiosis is a putative factor in ulcerative colitis (UC). Commensal microbes are butyrogenic, while others may inhibit butyrate, through hydrogenotropic activity. The aim of this study was to quantify butyrogenic and hydrogenotropic species and determine their relationship with inflammation within the colonic mucus gel layer (MGL). Mucosal brushings were obtained from 20 healthy controls (HC), 20 patients with active colitis (AC) and 14 with quiescent colitis (QUC). Abundance of each species was determined by RT-PCR. Inflammatory scores were available for each patient. Statistical analyses were performed using Mann-Whitney-U and Kruskall-Wallis tests. Butyrogenic R. hominis was more abundant in health than UC (p < 0.005), prior to normalisation against total bacteria. Hydrogenotropic B. wadsworthia was reduced in AC compared to HC and QUC (p < 0.005). An inverse correlation existed between inflammation and R. hominis (ρ - 0.460, p < 0.005) and B. wadsworthia (ρ - 0.646, p < 0.005). Other hydrogenotropic species did not widely colonise the MGL. These data support a role for butyrogenic bacteria in UC. Butyrate deficiency in UC may be related to reduced microbial production, rather than inhibition by microbial by-products.


Assuntos
Bilophila/metabolismo , Clostridiales/metabolismo , Colite Ulcerativa/microbiologia , Colo/microbiologia , Mucosa Intestinal/microbiologia , Adulto , Idoso , Butiratos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Cell Chem Biol ; 28(9): 1333-1346.e7, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33773110

RESUMO

Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site ß strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.


Assuntos
Carbono/metabolismo , Liases/metabolismo , Enxofre/metabolismo , Bilophila/enzimologia , Carbono/química , Cristalografia por Raios X , Liases/química , Modelos Moleculares , Enxofre/química
10.
Int J Cancer ; 148(7): 1708-1716, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285000

RESUMO

The underlying molecular mechanisms involved in the pathogenesis of endometrial cancer (EC) are still not well understood. Our goal was to investigate the composition of the endometrial microbiota and the association with inflammatory cytokines in EC. Endometrial microbiota profiles of women with EC (n = 25) and benign uterine lesions (BUL, n = 25) were assessed by 16S ribosomal RNA gene amplicon sequencing. The expression levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-17 (IL-17) mRNA and protein in the endometrial tissues of the two groups were determined by real-time quantitative polymerase chain reaction and Western blot, respectively. There were significant differences in alpha diversity based on the observed operational taxonomic units (P = .002), Pielou evenness (P = .001), and Shannon index (P < .001) between EC and BUL groups. Significant differences were also found in Bray-Curtis (P = .001) and unweighted UniFrac (P = .001) beta diversity measures between the two groups. At the genus level, Micrococcus was more abundant in the EC group. Pseudoramibacter_Eubacterium, Rhodobacter, Vogesella, Bilophila, Rheinheimera, and Megamonas were enriched in the BUL group. There were no differences in IL-8 and IL-17 protein levels between the two groups, except IL-6 protein levels. However, the mRNA expression levels of IL-6, IL-8, and IL-17 were significantly different. Moreover, the relative abundances of Micrococcus was positively correlated with IL-6, and IL-17 mRNA levels. In conclusion, our results suggested that dysbiosis of endometrial microbiota and the inflammatory cytokines were associated with Micrococcus in EC patients, which might be useful for exploration of the mechanism between the endometrial microbiota and inflammatory responses in future studies.


Assuntos
Citocinas/metabolismo , Disbiose/microbiologia , Neoplasias do Endométrio/etiologia , Microbiota/genética , Micrococcus/isolamento & purificação , Bilophila/isolamento & purificação , Correlação de Dados , Citocinas/genética , Disbiose/etiologia , Neoplasias do Endométrio/microbiologia , Feminino , Firmicutes/isolamento & purificação , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Pessoa de Meia-Idade , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real , Rhodobacter/isolamento & purificação
11.
Am J Physiol Endocrinol Metab ; 320(1): E113-E121, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166187

RESUMO

Patients with type 2 diabetes mellitus (T2DM) have a high risk of developing cholecystic disease. The gut microbiota has been shown to be strongly associated with cholecystectomy and T2DM pathogenesis. However, alterations of the gut microbiome in patients with T2DM who had undergone cholecystectomy remain unexplored. In this study, the gut microbiomes of 14 long-term patients with T2DM who had undergone cholecystectomy (T2DIIC group) and 21 age- and/or sex-matched subjects with new-onset (T2DI group) and long-term (T2DII group) T2DM without cholecystectomy were assessed using 16S rRNA gene sequencing of stool samples. It was found that cholecystectomy could alleviate the decrease in Pielou's evenness and the increase in the relative abundances of the Firmicutes phylum and Lachnospira genus in long-term patients with T2DM compared with T2DII subjects. Moreover, cholecystectomy also significantly increased the relative abundance of the Fusobacteria phylum, as well as that of the Fusobacterium and Bilophila genera. Interestingly, the T2DIIC and T2DI groups showed higher similarities than the T2DII group with respect to patterns of gut microbiota composition and predicted gut metagenomes. In summary, cholecystectomy could partially alleviate long-term diabetes-induced dysbiosis of the gut microbiota composition and function, but alterations in T2DM patient health warrant further study.NEW & NOTEWORTHY The gut microbiome of long-term T2DM patients who had undergone cholecystectomy and age- and/or sex-matched subjects of new-onset and long-term T2DM without cholecystectomy was assessed using 16S rRNA gene sequencing in stool samples. The findings suggest that, cholecystectomy could partially alleviate long-term diabetes-induced dysbiosis of gut microbiome composition and function.


Assuntos
Colecistectomia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Adulto , Idoso , Bilophila , Biologia Computacional , Fezes/microbiologia , Feminino , Fusobacterium , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , RNA Ribossômico 16S/metabolismo , Tireotropina/farmacologia
12.
Sci Rep ; 10(1): 19471, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173098

RESUMO

Murine models suggest that opioids alter the gut microbiota, which may impact opioid tolerance and psychopathology. We examined how gut microbiota characteristics related to use of opioid agonists and antagonists among people receiving outpatient addiction treatment. Patients (n = 46) collected stool samples and were grouped by use of opioid agonists (heroin, prescription opioids), antagonists (naltrexone), agonist-antagonist combinations (buprenorphine-naloxone), or neither agonists nor antagonists within the month before enrollment. We sequenced the V4 region of the 16S rRNA gene using Illumina MiSeq to examine how alpha diversity, enterotypes, and relative abundance of bacterial genera varied by opioid agonist and antagonist exposures. Compared to 31 participants who used neither agonists nor antagonists, 5 participants who used opioid agonists (without antagonists) had lower microbiota diversity, Bacteroides enterotypes, and lower relative abundance of Roseburia, a butyrate producing genus, and Bilophila, a bile acid metabolizing genus. There were no differences in gut microbiota features between those using agonist + antagonists (n = 4), antagonists only (n = 6), and neither agonists nor antagonists. Similar to murine morphine exposure models, opioid agonist use was associated with lower microbiota diversity. Lower abundance of Roseburia and Bilophila may relate to the gut inflammation/permeability and dysregulated bile acid metabolism observed in opioid-exposed mice.


Assuntos
Analgésicos Opioides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Adulto , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bacteroides/efeitos dos fármacos , Bacteroides/genética , Bilophila/efeitos dos fármacos , Bilophila/genética , Buprenorfina/farmacologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Naltrexona/farmacologia , Dinâmica Populacional , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Adulto Jovem
13.
Rev. Ateneo Argent. Odontol ; 62(1): 52-56, jun. 2020.
Artigo em Espanhol | LILACS | ID: biblio-1148211

RESUMO

Si partimos de que la microbiología es una ciencia fundante, podemos estar de acuerdo también en la necesidad de la continua actualización de sus contenidos y su vinculación con la odontología. Nuevas técnicas de diagnóstico permiten, no solo poder identificar características especiales de cada microorganismo y su reubicación en la taxonomía general, sino también habilitan a reconocer a aquellos ­hasta el momento­ desconocidos en la cotidianeidad de la práctica profesional y que revisten importancia por sus afecciones sistémicas ya que pueden transformar, en algunos casos, a que el paciente sea considerado de riesgo. En este trabajo, se abordan tres ejemplares bacterianos seleccionados por su complejidad en la identificación y por la magnitud de las lesiones que producen. Granulicatella spp., Kingela kingae y Bilophila wadsworthia afectan no solo adultos sino también pacientes pediátricos, siendo afectados por patologías severas. Se describen cuadros clínicos que afectan tejido óseo, corazón, cerebro, hígado, bazo, riñón y las manifestaciones orales a las cuales pueden asociarse grupos microbianos que agravan el pronóstico. Aplicar la tecnología adecuadamente, no solo a procedimientos odontológicos, sino también para diagnóstico (PCR ­ MALDI ­ TOF) facilita la detección e identificación con mayor celeridad de estos agentes microbianos, evitando la rotación farmacológica, la resistencia microbiana y la automedicación (AU)


Considering microbiology as a key science in the approach of infectious processes, we understand the need for a continuous update of its contents and its link with dentistry. The incorporation of new technological approaches, such as molecular methods or mass spectrometry, allow us not only to identify special characteristics of the microorganism and its relocation in taxonomy, but also to know those microorganisms until now unknown in professional´s life everyday practice and that are important for their systemic implications, modifying in some cases, the risk assessment of the patient. Three bacterial specimens are developed in this work, due to their complexity in the identification and the magnitude of the lesions they produce, Granulicatella spp., Kingela kingae and Bilophila wadsworthia. These affects both adult and paediatric patients, describing several clinical conditions that affect bone tissue, heart, brain, liver, spleen, kidney and oral manifestations to which these microbial groups can be associated, aggravating the prognosis. Applying new technology, not only to dental procedures but also to diagnosis, facilitates the detection and identification with greater speed of these microbial agents, avoiding pharmacological rotation, microbial resistance and self-medication (AU)


Assuntos
Microbiologia , Doenças da Boca/microbiologia , Resistência Microbiana a Medicamentos , Reação em Cadeia da Polimerase , Kingella kingae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Bilophila
14.
Gut Microbes ; 11(3): 381-404, 2020 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31177942

RESUMO

The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.


Assuntos
Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Ácidos e Sais Biliares/metabolismo , Ceco/microbiologia , Metaboloma , Transcriptoma , Animais , Bacteroides/genética , Bacteroides/metabolismo , Bilophila/genética , Bilophila/metabolismo , Ácidos Cólicos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Genômica , Vida Livre de Germes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Óperon , RNA-Seq , Regulação para Cima
15.
Environ Microbiol Rep ; 12(2): 115-135, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31713352

RESUMO

In recent years, there has been an increase in studies on the implications of gut microbiota (GM) on the behaviour of children with autism spectrum disorders (ASD) due to a dysbiosis in GM that can trigger onset, development or progression of ASD through the microbiota-gut-brain axis. The aim of this study is to carry out a systematic review of articles from the last 6 years that analyse GM in children with ASD compared to GM in control groups. Children with ASD showed a higher abundance of Roseburia and Candida genera, and lower abundance of Dialister, Bilophila, Veillonella, Streptococcus, Coprococcus and Prevotella genera. Those differences can be attributed to factors such as different nationalities, nature of control groups, place where the sample was taken, gastrointestinal (GI) problems or bacterial detection methods. It is still too early to define a specific GM profile of children with ASD, and future studies should focus on homogenizing the characteristics of samples and control groups. Furthermore, new multicentre studies should also focus on the impact of GM on GI physiology, neurophysiology and behaviour of children with ASD, and on performing psychometric analyses of the correlation between the severity of ASD behavioural symptoms and GM profiles.


Assuntos
Transtorno do Espectro Autista/microbiologia , Microbioma Gastrointestinal , Bactérias/classificação , Bilophila , Criança , Pré-Escolar , Clostridiales , Disbiose/microbiologia , Feminino , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Prevotella , Streptococcus , Veillonellaceae
16.
Vasc Endovascular Surg ; 53(6): 470-476, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31216949

RESUMO

BACKGROUND: Open vascular surgery interventions are not infrequently hampered by complication rates and durability. Preclinical surgical models show promising beneficial effects in modulating the host response to surgical injury via short-term dietary preconditioning. Here, we explore short-term protein-calorie restriction preconditioning in patients undergoing elective carotid endarterectomy to understand patient participation dynamics and practicalities of robust research approaches around nutritional/surgical interventions. METHODS: We designed a pilot prospective, multicenter, randomized controlled study in patients undergoing carotid endarterectomy. After a 3:2 randomization to a 3-day preoperative protein-calorie restriction regimen (30% calorie/70% protein restriction) or ad libitum group, blood, clinical parameters, and stool samples were collected at baseline, pre-op, and post-op days 1 and 30. Subcutaneous and perivascular adipose tissues were harvested periprocedurally. Samples were analyzed for standard chemistries and cell counts, adipokines. Bacterial DNA isolation and 16S rRNA sequencing were performed on stool samples and the relative abundance of bacterial species was measured. RESULTS: Fifty-one patients were screened, 9 patients consented to the study, 5 were randomized, and 4 completed the trial. The main reason for non-consent was a 3-day in-hospital stay. All 4 participants were randomized to the protein-calorie restriction group, underwent successful endarterectomy, reported no compliance difficulties, nor were there adverse events. Stool analysis trended toward increased abundance of the sulfide-producing bacterial species Bilophila wadsworthia after dietary intervention (P = .08). CONCLUSIONS: Although carotid endarterectomy patients held low enthusiasm for a 3-day preoperative inpatient stay, there were no adverse effects in this small cohort. Multidisciplinary longitudinal research processes were successfully executed throughout the nutritional/surgical intervention. Future translational endeavors into dietary preconditioning of vascular surgery patients should focus on outpatient approaches.


Assuntos
Restrição Calórica , Estenose das Carótidas/cirurgia , Dieta com Restrição de Proteínas , Endarterectomia das Carótidas , Cuidados Pré-Operatórios/métodos , Idoso , Bilophila/crescimento & desenvolvimento , Boston , Restrição Calórica/efeitos adversos , Estenose das Carótidas/diagnóstico por imagem , Dieta com Restrição de Proteínas/efeitos adversos , Procedimentos Cirúrgicos Eletivos , Endarterectomia das Carótidas/efeitos adversos , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Estado Nutricional , Projetos Piloto , Cuidados Pré-Operatórios/efeitos adversos , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
17.
Nat Commun ; 10(1): 1609, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962433

RESUMO

Bacterial degradation of organosulfonates plays an important role in sulfur recycling, and has been extensively studied. However, this process in anaerobic bacteria especially gut bacteria is little known despite of its potential significant impact on human health with the production of toxic H2S. Here, we describe the structural and biochemical characterization of an oxygen-sensitive enzyme that catalyzes the radical-mediated C-S bond cleavage of isethionate to form sulfite and acetaldehyde. We demonstrate its involvement in pathways that enables C2 sulfonates to be used as terminal electron acceptors for anaerobic respiration in sulfate- and sulfite-reducing bacteria. Furthermore, it plays a key role in converting bile salt-derived taurine into H2S in the disease-associated gut bacterium Bilophila wadsworthia. The enzymes and transporters in these anaerobic pathways expand our understanding of microbial sulfur metabolism, and help deciphering the complex web of microbial pathways involved in the transformation of sulfur compounds in the gut.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Desulfovibrio/metabolismo , Sulfeto de Hidrogênio/toxicidade , Taurina/metabolismo , Acetiltransferases/genética , Acetiltransferases/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Ácidos e Sais Biliares/metabolismo , Bilophila/metabolismo , Ensaios Enzimáticos , Microbioma Gastrointestinal/fisiologia , Sulfeto de Hidrogênio/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mercaptoetanol/análogos & derivados , Mercaptoetanol/metabolismo , Redes e Vias Metabólicas/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Enxofre/metabolismo
18.
J Infect Chemother ; 25(9): 708-713, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30982727

RESUMO

PURPOSE: Controversy exists over whether bacterial flora within the appendix differs between patients with and without appendicitis. To examine these potential differences, we cultured the appendiceal luminal microbiota of patients with and without acute appendicitis, and identified the bacterial species therein. METHODS: Fifty-seven patients with acute appendicitis and 37 patients without acute appendicitis who underwent curative resection of colorectal cancer and prophylactic appendectomies (control group) were included. Appendicitis patients were classified into the phlegmonous group or the gangrenous appendicitis group histopathologically. There was no patient with perforated appendicitis. Aerobic isolates were identified using standard identification schemata, and anaerobic isolates were identified according to the Japanese guidelines. RESULTS: There were no significant differences among the three groups in the median number aerobe species present per patient. However, the median number anaerobe species in the gangrenous appendicitis group was significantly higher than that of the control group and the phlegmonous appendicitis group. In addition, the incidence of patients with Bacillus species, Fusobacterium nucleatum, and Bilophila wadsworthia increased as the disease progressed from phlegmonous to gangrenous appendicitis. CONCLUSION: The present results suggest that increased diversity of anaerobes and the translocation of Bacillus species, F. nucleatum, and B. wadsworthia are associated with the progression of acute appendicitis.


Assuntos
Apendicite/microbiologia , Apêndice/microbiologia , Infecções Bacterianas/microbiologia , Doença Aguda , Adulto , Apendicectomia , Apendicite/patologia , Apendicite/cirurgia , Bacillus/isolamento & purificação , Bactérias Aeróbias/isolamento & purificação , Bactérias Anaeróbias/isolamento & purificação , Infecções Bacterianas/patologia , Infecções Bacterianas/cirurgia , Bilophila/isolamento & purificação , Feminino , Fusobacterium nucleatum/isolamento & purificação , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade
19.
Gut Microbes ; 10(4): 447-457, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30810441

RESUMO

High-protein diets may be linked to gut inflammation due to increased production of hydrogen sulfide (H2S), a potential toxin, as an end product of microbial fermentation in the colon by sulfidogenic sulfate-reducing bacteria (SRB). We hypothesized that dietary content of sulfur-containing amino acids (SAA) leads to variation in the relative abundances of intestinal SRB, which include Desulfovibrio and Bilophila taxa. To test this hypothesis we performed a pilot crossover study in four healthy volunteers, who consumed two interventional diets for 10-14 days, containing high or low SAA content. The total energy intake was similar between the two dietary extremes. Microbial communities were characterized by 16S rRNA gene amplicon and shotgun next-generation DNA sequencing. While the relative abundance of Desulfovibrio differed among participants (ANOVA P= 0.001), we could not detect a change with dietary treatments. Similarly, no differences in Bilophila abundance were observed among individuals or dietary arms. Inter-personal differences in microbial community composition and functional gene categories differed between subjects and these differences were maintained over the course of the study. These observations are consistent with re-analysis of two previously published dietary intervention studies. Finally, we found that inter-personal differences in the taxonomic composition of fecal microbiota, including the relative abundances of SRB, were maintained over time in 19 healthy individuals in our stool donor program. These results suggest that the use of dietary interventions alone may be insufficient for rapid therapeutic targeting of SRB. Nevertheless, these pilot data provide a foundation to inform future, statistically powered, studies.


Assuntos
Bactérias/efeitos dos fármacos , Dieta , Intestinos/microbiologia , Sulfatos/metabolismo , Enxofre/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bilophila/genética , Bilophila/crescimento & desenvolvimento , Bilophila/metabolismo , Estudos Cross-Over , Desulfovibrio/genética , Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/metabolismo , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Enxofre/farmacologia
20.
Proc Natl Acad Sci U S A ; 116(8): 3171-3176, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718429

RESUMO

Hydrogen sulfide (H2S) production in the intestinal microbiota has many contributions to human health and disease. An important source of H2S in the human gut is anaerobic respiration of sulfite released from the abundant dietary and host-derived organic sulfonate substrate in the gut, taurine (2-aminoethanesulfonate). However, the enzymes that allow intestinal bacteria to access sulfite from taurine have not yet been identified. Here we decipher the complete taurine desulfonation pathway in Bilophila wadsworthia 3.1.6 using differential proteomics, in vitro reconstruction with heterologously produced enzymes, and identification of critical intermediates. An initial deamination of taurine to sulfoacetaldehyde by a known taurine:pyruvate aminotransferase is followed, unexpectedly, by reduction of sulfoacetaldehyde to isethionate (2-hydroxyethanesulfonate) by an NADH-dependent reductase. Isethionate is then cleaved to sulfite and acetaldehyde by a previously uncharacterized glycyl radical enzyme (GRE), isethionate sulfite-lyase (IslA). The acetaldehyde produced is oxidized to acetyl-CoA by a dehydrogenase, and the sulfite is reduced to H2S by dissimilatory sulfite reductase. This unique GRE is also found in Desulfovibrio desulfuricans DSM642 and Desulfovibrio alaskensis G20, which use isethionate but not taurine; corresponding knockout mutants of D. alaskensis G20 did not grow with isethionate as the terminal electron acceptor. In conclusion, the novel radical-based C-S bond-cleavage reaction catalyzed by IslA diversifies the known repertoire of GRE superfamily enzymes and enables the energy metabolism of B. wadsworthia This GRE is widely distributed in gut bacterial genomes and may represent a novel target for control of intestinal H2S production.


Assuntos
Oxirredutases do Álcool/genética , Bilophila/enzimologia , Sulfeto de Hidrogênio/metabolismo , Proteômica , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Anaerobiose/genética , Bilophila/química , Bilophila/metabolismo , Microbioma Gastrointestinal/genética , Humanos , Sulfeto de Hidrogênio/química , Oxirredução , Taurina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...